If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+28x-2400=0
a = 3; b = 28; c = -2400;
Δ = b2-4ac
Δ = 282-4·3·(-2400)
Δ = 29584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{29584}=172$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-172}{2*3}=\frac{-200}{6} =-33+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+172}{2*3}=\frac{144}{6} =24 $
| x-1/2+2=2x-2/2 | | |3k+8|=2 | | (x+5)+(2x+5)+(7x)=180 | | 5y+6=2+4y | | 4y-51=65 | | -(3x+8)-7x=2x+8(-6-x | | 1.2w+5=-0.3w-4 | | -(x-3)+6-4=-1 | | (x)=3⋅x−8 | | 4q-9=6q+11 | | 0.5x+6=0.5x-3 | | -3(-2a+3)=3 | | 7p-3=12 | | 15g9=-5 | | y=32-2Q | | 0.4/0.2=x/1 | | 3^(x+2)+3^(x-2)=82 | | 29.5-5.5x=7.5(3.5+3.5) | | 5(2x+5)=9(x-1) | | 8y+6=36-9 | | x+15=-72 | | P(3)=27-9+3k+k | | P(3)=27-9+3k+k=0 | | 0.01=0.05*y | | 48-p=2p+24 | | 15/6=20/x | | x+300+50+x=1900 | | -6x-25=73 | | t=11/5 | | x3+2x2+x-1=0 | | (3x-1)(4x-5)=0 | | 157=11v+47= |